Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x), s(y)) → MINUS(max(x, y), min(x, transform(y)))
MIN(s(x), s(y)) → MIN(x, y)
TRANSFORM(cons(x, y)) → CONS(x, x)
GCD(s(x), s(y)) → MIN(x, transform(y))
TRANSFORM(s(x)) → TRANSFORM(x)
GCD(s(x), s(y)) → MAX(x, y)
GCD(s(x), s(y)) → MIN(x, y)
TRANSFORM(cons(x, y)) → CONS(cons(x, x), x)
CONS(x, cons(y, s(z))) → CONS(y, x)
CONS(cons(x, z), s(y)) → TRANSFORM(x)
MINUS(s(x), s(y)) → MINUS(x, y)
MAX(s(x), s(y)) → MAX(x, y)
GCD(s(x), s(y)) → GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
GCD(s(x), s(y)) → TRANSFORM(y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x), s(y)) → MINUS(max(x, y), min(x, transform(y)))
MIN(s(x), s(y)) → MIN(x, y)
TRANSFORM(cons(x, y)) → CONS(x, x)
GCD(s(x), s(y)) → MIN(x, transform(y))
TRANSFORM(s(x)) → TRANSFORM(x)
GCD(s(x), s(y)) → MAX(x, y)
GCD(s(x), s(y)) → MIN(x, y)
TRANSFORM(cons(x, y)) → CONS(cons(x, x), x)
CONS(x, cons(y, s(z))) → CONS(y, x)
CONS(cons(x, z), s(y)) → TRANSFORM(x)
MINUS(s(x), s(y)) → MINUS(x, y)
MAX(s(x), s(y)) → MAX(x, y)
GCD(s(x), s(y)) → GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
GCD(s(x), s(y)) → TRANSFORM(y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 5 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TRANSFORM(cons(x, y)) → CONS(cons(x, x), x)
CONS(x, cons(y, s(z))) → CONS(y, x)
CONS(cons(x, z), s(y)) → TRANSFORM(x)
TRANSFORM(cons(x, y)) → CONS(x, x)
TRANSFORM(s(x)) → TRANSFORM(x)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TRANSFORM(cons(x, y)) → CONS(cons(x, x), x)
CONS(x, cons(y, s(z))) → CONS(y, x)
CONS(cons(x, z), s(y)) → TRANSFORM(x)
TRANSFORM(cons(x, y)) → CONS(x, x)
The remaining pairs can at least be oriented weakly.
TRANSFORM(s(x)) → TRANSFORM(x)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( transform(x1) ) = | | + | | · | x1 |
Tuple symbols:
M( TRANSFORM(x1) ) = | 1 | + | | · | x1 |
M( CONS(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
transform(x) → s(s(x))
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
transform(cons(x, y)) → cons(cons(x, x), x)
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
transform(cons(x, y)) → y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TRANSFORM(s(x)) → TRANSFORM(x)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TRANSFORM(s(x)) → TRANSFORM(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- TRANSFORM(s(x)) → TRANSFORM(x)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MINUS(s(x), s(y)) → MINUS(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MAX(s(x), s(y)) → MAX(x, y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MAX(s(x), s(y)) → MAX(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MAX(s(x), s(y)) → MAX(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MIN(s(x), s(y)) → MIN(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x), s(y)) → GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
GCD(s(x), s(y)) → GCD(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( minus(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( max(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( transform(x1) ) = | | + | | · | x1 |
M( min(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( GCD(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
min(0, y) → 0
min(x, 0) → 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.